Privacy Technology Certification

Outline of the Body of Knowledge (BOK) for the Certified Information Privacy Technologist (CIPT)

I. Foundational Principles

A. Privacy Risk Models and Frameworks
 a. Nissenbaum’s Contextual Integrity
 b. Calo’s Harms Dimensions
 c. Legal Compliance
 d. FIPPs
 e. NIST/NICE frameworks
 f. FAIR (Factors Analysis in Information Risk)

B. Privacy by Design Foundational Principles
 a. Full Life Cycle Protection
 b. Embedded into Design
 c. Full Functionality
 d. Visibility and Transparency
 e. Proactive not Reactive
 f. Privacy by Default
 g. Respect for Users

C. Value Sensitive Design
 a. How Design Affects Users
 b. 14 Methods
 c. Strategies for Skillful practice

D. The Data Life Cycle
 a. Collection
 b. Use
 c. Disclosure
 d. Retention
 e. Destruction

II. The Role of IT in Privacy

A. Fundamentals of privacy-related IT
 a. Organization privacy notice
b. Organization internal privacy policies

c. Organization security policies, including data classification policies and schema, data retention and data deletion

d. Other commitments made by the organization (contracts, agreements)

e. Common IT Frameworks (COBIT, ITIL, etc.)

f. Data inventories
g. Enterprise architecture and data flows, including cross-border transfers

h. Privacy impact assessments (PIAs)

B. Information Security

a. Transactions which collect confidential data for use in later processing activities

b. Breach/disclosure incident investigations and responses—security and privacy perspectives

c. Security and privacy in the systems development life cycle (SDLC) process

d. Privacy and security regulations with specific IT requirements

C. The privacy responsibilities of the IT professional

a. Providing feedback on policies

b. Providing feedback on contractual and regulatory requirements

c. Understanding how Information Technology and Information Security support information governance in an organization

III. Privacy Threats and Violations

A. During Data Collection

a. Asking people to reveal personal information

b. Surveillance

B. During Use

a. Insecurity

b. Identification

c. Aggregation

d. Secondary Use

e. Exclusion

C. During Dissemination

a. Disclosure

b. Distortion

c. Exposure

d. Breach of Confidentiality

e. Increased accessibility

f. Blackmail

g. Appropriation

D. Intrusion, Decisional Interference and Self Representation

a. Behavioral advertising

b. Cyberbullying

c. Social engineering

E. Software Security
IV. Technical Measures and Privacy Enhancing Technologies

A. Data Oriented Strategies

a. Separate
 i. Distribute
 ii. Isolate

b. Minimize
 i. Exclude
 ii. Select
 iii. Strip
 iv. Destroy

c. Abstract
 i. Group
 ii. Summarize
 iii. Perturb

d. Hide
 i. Restrict
 ii. Mix
 iii. Obfuscate
 iv. Dissociate

B. Techniques

a. Aggregation
 i. Frequency and magnitude data
 ii. Noise addition through differential privacy
 iii. Differential identifiability

b. De-identification
 i. Anonymize
 ii. Pseudonymize
 iii. Labels that point to individuals
 iv. Strong and weak identifiers
 v. Degrees of Identifiability
 vi. k-anonymity, l-diversity, t-closeness
 vii. Tokenization

c. Encryption
 i. Algorithms and Keys
 ii. Symmetric and Asymmetric
 iii. Crypto design and implementation considerations
 iv. Application or field encryption
 v. Quantum encryption
 vi. Public Key Infrastructure
 vii. Homomorphic
 viii. Polymorphic
 ix. Mix networks
 x. Secure multi-party computation
xi. Private information retrieval
d. Identity and access management
 i. Limitations of access management as a privacy tool
 ii. Principle of least-privilege required
 iii. Role-based access control (RBAC)
 iv. User-based access controls
 v. Context of authority
 vi. Cross-enterprise authentication and authorization models
 vii. Federated identity
 viii. Bring your own device (BYOD) concerns

e. Authentication
 i. Single/multi factor authentication
 ii. Something you know (usernames, passwords)
 iii. Something you are (biometrics, facial recognition, location)
 iv. Something you have (tokens, keys)

C. Process Oriented Strategies
 a. Informing the Individual
 i. Supply
 ii. Notify
 iii. Explain
 b. User Control
 i. Consent
 ii. Choose
 iii. Update
 iv. Retract
 c. Policy and Process Enforcement
 i. Create
 ii. Maintain
 iii. Uphold
 d. Demonstrate Compliance
 i. Log
 ii. Audit
 iii. Report

V. Privacy Engineering
 A. The Privacy Engineering role in the organization
 B. Privacy Engineering Objectives
 a. Predictability
 b. Manageability
 c. Disassociability
 C. Privacy Design Patterns
 a. Design patterns to emulate
 b. Dark patterns to avoid
 D. Privacy Risks in Software
 a. Risks
 b. Countermeasures
VI. Privacy by Design Methodology

A. The Privacy by Design Process
 a. Goal Setting
 b. Documenting Requirements
 c. Understanding quality attributes
 d. Identify information needs
 e. High level design
 f. Low level design and implementation
 g. Impose controls
 1. Architect
 2. Secure
 3. Supervise
 4. Balance
 h. Testing and validation

B. Ongoing Vigilance
 a. Code reviews
 b. Code audits
 c. Runtime behavior monitoring
 d. Software evolution

VII. Technology Challenges for Privacy

A. Automated decision making
 a. Machine learning
 b. Deep learning
 c. Artificial Intelligence (AI)
 d. Context aware computing

B. Tracking and Surveillance
 a. Internet monitoring
 b. Web tracking
 c. Location tracking
 d. Audio and Video Surveillance
 e. Drones

C. Anthropomorphism
 a. Speech recognition
 b. Natural language understanding
 c. Natural language generation
 d. Chat bots
 e. Robots

D. Ubiquitous computing
 a. Internet of Things (IoT)
 b. Vehicular automation
 c. Wearable devices

E. Mobile Social Computing
 a. Geo-tagging
b. Geo-social patterns